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Symmetry relations for trajectories of a Brownian motor
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A Brownian motor is a nanoscale or molecular device that combines the effects of thermal noise, spatial or
temporal asymmetry, and directionless input energy to drive directed motion. Because of the input energy,
Brownian motors function away from thermodynamic equilibrium and concepts such as linear response theory,
fluctuation dissipation relations, and detailed balance do not apply. The generalized fluctuation-dissipation
relation, however, states that even under strongly thermodynamically nonequilibrium conditions the ratio of the
probability of a transition to the probability of the time reverse of that transition is the exponential of the
change in the internal energy of the system due to the transition. Here, we derive an extension of the gener-
alized fluctuation dissipation theorem for a Brownian motor for the ratio between the probability for the motor
to take a forward step and the probability to take a backward step.
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A Brownian motor is a nanoscale or molecular device that
combines the effects of thermal noise, spatial or temporal
asymmetry, and directionless input energy to drive directed
motion [1,2]. Many biological motile systems may be driven
by Brownian motors, and chemists have been able to synthe-
size molecules that function as Brownian motors [3,4]. In
solution, viscous drag and thermal noise dominate the iner-
tial forces that drive macroscopic machines. Because of the
strong viscous drag, the motion of such a Brownian motor is
overdamped and in one dimension can be described by the
simple equation [5]

Ra—-X=er), (1)

where €(f) is Gaussian noise with mean =0 and variance
02=2RkzT/dt and R is the coefficient of viscous friction. In
the following (and in the rest of the paper) we use units
where the thermal energy kzT=1. The generalized force X
=X(a, (1)) can be written as the gradient of a scalar poten-
tial X=—0H/da where

H(a,yl1)) = Ula) + ¥(1)z(a) 2)

is the sum of an intrinsic potential due to chemical interac-
tions and any external load and an external time-dependent
forcing term that is the product of canonically conjugate in-
tensive and extensive thermodynamic parameters z(«) and
(1), respectively [6]. The conjugate parameters include, e.g.,
molecular volume and pressure, entropy and temperature, or
dipole moment and field. The underlying system is typically
spatially periodic (possibly with a homogeneous force or
load F) so that U(a+L)=U(a)+AU, where AU=FL and
z2(a+L)=z(a).
For any fixed value of ¢ detailed balance requires
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P(a;+ LT[+ |;,0)
P#(ai,’ZT - |+ L,0) -

e—AU, (3)

where P(a;+L,7]-**|a;,0) is the conditional probability
density that a particle starting at position «; at time 0 goes
to position «;+L at time 7 by the specific trajectory
(sequence of positions and times), denoted by---, and
P'(a;, 7 -+|a;+L,0) is the conditional probability to follow
the reverse of that process. The ratio depends only on the
difference in energy between the initial and final points. It
further holds that

P(L,710,0)

P(0.7]L,0)
where the net probability P(L,7]0,0)=[y - [EP(q;
+L,7[--|a;,0) is the integral over all trajectories from (0,0)
to (L, 7).

A time-dependent modulation ¢(r) causes dissipation and
breaks detailed balance, in which case Egs. (3) and (4) do not
hold. It is even possible to have

P(L,710,0
w>1, e AV <, (35)
P(0,7]L,0)

e—AU’ (4)

where the external stimulus () provides energy to drive
uphill motion [7,8].

The generalized fluctuation-dissipation theorem [9,10]
states that even under strongly thermodynamically nonequi-
librium conditions the ratio of the probability of a forward
(F) transition to the probability of the time reverse (Fy) of
that transition is the exponential of the change in the internal
energy of the system due to the transition

Pi(L,7]---|0,0)
PFR(07_7T". L,O) B

where W is the work supplied to the system by the external
modulation in the forward trajectory. We can derive an ex-
tension of the generalized fluctuation dissipation theorem for
a Brownian motor to obtain the ratio between the probability
for the motor to take a forward step and the probability to

eW—AU’ (6)
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FIG. 1. Depiction of symmetry-related trajectories of a Brown-
ian particle in a periodic ratchet potential. (a) Snapshot of a
“ratchet” potential with a particle at @=0. (b) With an external
forcing ¢(r) the four trajectories F, Fg, B, and By are distinct from
one another.

take a backward step in forward time. First, we write Eq. (1)
as a more rigorous finite-difference or update equation and
convert to unit normal Gaussian noise N(0,1) [11]:

Q) — a;— R_IXH_lA[: V'ZR_IAZN(O, 1) (7)

The time interval Az is chosen to be sufficiently short that the
change in position, Aa, is very small. We used the relation
N(u,0?)=u+0aN(0,1) where N(0,1) is a Gaussian random
variable with zero mean and unit variance, the values n of
which occur with probability P(n)=exp(-n?/ 2)/(\3“%). Any
two values of n are uncorrelated (n;n;)=5, .

Broken symmetry is an essential feature of a Brownian
motor, so we split each of the position-dependent terms into
even and odd components U(a)=U%(a)+U°(@) and
72(@)=z°(a) +z°(@), where for any function f*(—a)=/(a) and

f°(—=a)=—f°(a). Finite-difference expressions for the
even and odd components of the generalized force, X;,;
:X?+1+X?+1’ are
(0.€) (0.€)
Xl(if)) __ AUST + i Azy , )

Qi) — &

where AfY, =f“(a;,1)—f () for f=U, z and k=e,o. For ev-
ery forward trajectory {a(r),y(r)} with probability P, de-
fined by

¥ 2] V-1 U
F=0—a— " — a,—L,

M-1

Pp= H P(ai+1|ai;'/ff+1)» 9
i=0

there are three symmetry-related trajectories, as seen in Fig.
1. One is a time-reverse trajectory [12] {a(-1), ¥(~1)} ob-
tained by switching the sign of time [t — (7~1)],
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U Y- ) i
Fr=0—»a, ,-L— -~-—a—-L—-L,

M-1
Pr = H P(“i|ai+1;¢i+1), (10)

R
i=0

where we subtracted L from each position. Another is a back-
ward trajectory {—a(t), (7)} obtained by switching the sign
of the position variable,

i 123 V-1 U
B=0—--a—-* — —-a,1——-L,

M-1

Py= [ P(= ey |- s 95y (11)
i=0

The last is a backward reverse trajectory {—a(z), ¥(—1)} ob-
tained by switching the sign of both time and of the position
variable:

U Un-1 I 21
Br=0—-L-a,,— - —L-a—L,

M-1
Py = I1 P(= |- aiurs ), (12)
i=0

where we added L to each position. Viewing Eq. (7) as a
mapping between the “noise” space and “position” space
[13], the conditional probability density given that the sys-
tem is at position «; after the ith step and that the value of the
field is ¢;,, for the (i+1)st step is seen to be

o~(Ba = R7X;  A0P/4R™ As

P(ai+1|ai»l//i+1)= s (13)

V4R At

where Aa=(a;,|— ;). The ratio of the probability density for

the forward and time reverse steps is
P(aiy|ai, is1) _ Xiniha
P(a] ey, in) ’

and the ratio between the forward and time reverse trajecto-
ries is

(14)

M-1
P
_F=CXP<2 Xi+lAa) ="y, (15)
P, i=0
where
M-1
We= 2 4 [Az%(a) + AZ%(a)] (16)
i=0

is the total external work done in the forward trajectory.
Equation (15) is the generalized fluctuation dissipation rela-
tion [9,10], and the change in the internal energy of the sys-
tem, AE=AU—-Wrp, is the dissipated work. The ratio of the
probability density for a backward and backward time re-
verse is similarly obtained,
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P
—B=eWB+AU, (17)
where
M-1
We= 2 th[Az%(a) - Az(@)] (18)
i=0

is the total external work done in the backward trajectory.
Finally, the ratio between a forward and backward steps is
P(ai+1|ai7 $i+1) = eXf+lAa_X?+1X?+l
P(= |- a;, 1)

The ratio for the probability densities for a forward and back-
ward trajectory follows immediately:

T
P X°X°
Pr_ v exp<_ f d,) , (20)
Py o R

KA (19)

where we have taken the limit Az—0 to get the integral
form. Unlike the symmetry relations for the forward and re-
verse (and backward and backward reverse) trajectories, the
ratio for the forward and backward trajectories involves the
whole path. Equation (20) highlights the importance of bro-
ken symmetry—if either X° or X° is zero, the ratio of the
probability for a forward step to a backward step is governed
solely by the homogeneous force acting on the system and is
independent of the work pumped in by the time-dependent
modulation.

The results can be summarized using the Onsager-
Machlup thermodynamic action [5,14]

T
1
,-=4—J [a(r) + X/RT*dt, i = F,B,Fg,Bg, (21)
0

where XF’FR=X"'+X° and XB’BR=X°—X°. Then

P,
—L = oR(S5),

P.

J

i,j=F,B,Fg,Bg. (22)

The least action (optimal) trajectory is that for which the
Lagrangian L(a,d)=[a()+X;/R]*> solves the Euler-
Lagrange equation [d/da—(d/dt)dl da]L(a,a)=0. Systems
where the trajectories that minimize the action in the forward
and backward directions are mirror images of one another
are “symmetric,” while systems where these paths are not
mirror images, but for which the least action is nonetheless
the same in the forward and backward directions are “super-
symmetric” [16]. Optimizing a Brownian motor requires that
we design a system and modulation scheme that maximizes
the difference between the least action in the forward and
backward directions [17]. The relationship between the
Onsager-Machlup approach and “fluctuation” theorems has
been discussed recently [14,15].

We can most easily demonstrate application of these re-
sults in the context of a lattice model with only a few dis-
crete states. Consider the standard ratchet potential [Fig.

1(a)] [2]
U(a) =Uycos(Ra) + Fa,
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z2(@) = zg[cos(sm)cos(a) + sin(sr)sin(@)], (23)

where the asymmetry parameter is —-1<s=<1. For
Uy> yzp, where iy, is the amplitude of the external modu-
lation, a single spatial period of the potential has two clearly
defined energy wells, say O and 1. We can then describe the
motion as a random walk on a lattice

0 1 0

—

~ 0 1 0

1 =]

> =]

> =]
—

> =]
2

0
1 0 1 0 (24)

The transition constants are

ko= K[e2U(g )],
fy = K[e™VI(t )],
ko= K[V (1)1,

ey = K[eAU( 1) ], (25)

where ¢¢=e*000s6™ and o=et0sinG™  The even part
of the time-dependent perturbation cos(s#) influences the
relative energies of the two states O and 1, and the odd part of
the time-dependent perturbation sin(s7) influences the rela-
tive heights of the two barriers. Irrespective of the value of s
or of the form of ¢At), a corollary of detailed balance for rate
processes

1 _ s (26)
holds at every instant. Nevertheless, any time-dependent
modulation ¢(r) drives motion to the right when AU=0 and
can do work against a small nonzero AU>0. The infinitely
extened lattice model can more conveniently be written as a
cycle OS 1, where a clockwise transition indicates a half-step
to the right and a counterclockwise transition indicates a
half-step to the left on the lattice.

For the specific case that ¢(r) is externally generated di-

y
chotomic noise (+W=-V) in which () switches between

Y
+W¥ and -V with a Poisson distributed random lifetime (av-
erage 1/7) the combined stepping and switching process can
be described by a single diagram [6]

S (27)

This case is particularly relevant for Brownian motors that
are driven, e.g., by the stochastic binding of chemical fuel
molecule [e.g., adenosine triphosphate (ATP)] and release of
product [adensoine diphosphate (ADP)]. For such motors,
the forward process (F) is one in which one ATP is converted
into ADP and the motor takes one step forward; the forward
reverse (Fg) process is one in which one ADP is converted
into ATP and the motor takes one step back; the backward
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process (B) is one in which one ATP is converted into ADP
and the motor takes one step backward; and the backward
reverse process (Bg) is one in which one ADP is converted
into ATP and the motor takes one step forward.

The overall diagram can be broken into six cycles
[6]—two cycles for the uncoupled stepping, one with fixed
+W and the other with fixed =W, two cycles for the dissipa-
tive back and forth motion with no net stepping, and two
cycles describing net stepping coupled to the external fluc-
tuation. The last two, coupled, cycles are of particular inter-
est. The forward, reverse, backward, and backward reverse
paths are

=\ VS

S

0_ 1 0_ 1 (28)

The probability for completion of a cycle is proportional to
the product of the transition constants in the cycle. The pro-
portionality constants involve rate constants for back and
forth transitions, lifetimes of the states within the cycle, etc.
Importantly, since F, Fg, B, and By directional cycles [Eq.
(28)] involve the same states, the proportionality constants
are the same for all of these symmetry-related cycles. Thus,
with k; =k ((t)=+W), it is easy to derive

Pr ko+k1_

IR =" AU,
Fr k1+k0_
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k
8 _ =+ = €W+AU, (29)

where W=In(¢?) is the work done in the forward cycle when
the energy is increased by 2zoW sin(s7r) in going from
0,-—0,+ and again from 1,+—1,—. Here and below

qﬁff‘o):(f)(e"’)(w(t): +W). The ratio of the probabilities for a
forward and backward cycle is
Pr ko ];1
Lo =AU (30)
Py ko ky

and the ratio of the net forward to backward steps is

Pp+P ¢ b
P+ BRze_AU(1+¢+¢+>. G31)

Pg+Pp, &5+ &5

The expansion of the coefficient in Eq. (31) involves only
even powers of the amplitude ¢, of the external driving—the
Brownian motor mechanism is a fundamentally nonlinear ef-
fect of the external driving [18]. Many recent synthetic
implementations of molecular Brownian motors involve mo-
tion between discrete binding sites. Without an external driv-
ing the thermally activated transitions show no long-time
order irrespective of structural asymmetry, consistenty with
the principle of detailed balance. By using external energy to
manipulate the environment, even in a seemingly random
way, it is possible to break detailed balance and to drive
directed motion. The symmetry relations derived here may
provide insight into how it may be possible to optimize syn-
thetic molecular motors.

[1] P. Reimann, Phys. Rep. 361, 57 (2002).

[2] R. D. Astumian and P. Hanggi, Phys. Today 55(11), 33 (2002).

[3]E. R. Kay, D. A. Leigh, and F. Zerbetto, Angew. Chem., Int.
Ed. 46, 72 (2007).

[4] W. R. Browne and B. L. Feringa, Nat. Nanotechnol. 1, 25
(2006).

[5] L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953).

[6] R. D. Astumian, P. B. Chock, T. Y. Tsong, and H. V. Wester-
hoff, Phys. Rev. A 39, 6416 (1989).

[7] R. D. Astumian and M. Bier, Phys. Rev. Lett. 72, 1766 (1994).

[8]1J. Prost, J. F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev.
Lett. 72, 2652 (1994).

[9] G. N. Bochkov and Yu. E. Kuzovlev, Sov. Phys. JETP 45, 125
(1977).

[10] G. N. Bochkov and Yu. E. Kuzovlev, Physica A 106, 443
(1981).

[11] D. T. Gillespie, Am. J. Phys. 64, 225 (1995).

[12] G. Crooks, J. Stat. Phys. 90, 1481 (1998).

[13] M. Bier, 1. Derenyi, M. Kostur, and R. D. Astumian, Phys.
Rev. E 59, 6422 (1999).

[14] R. D. Astumian, Am. J. Phys. 74, 6383 (2006).

[15] V. Chernyak, M. Chertkov, and C. Jarzynski, J. Stat. Mech.:
Theory Exp. 2006, POS001.

[16] P. Reimann, Phys. Rev. Lett. 86, 4992 (2001).

[17] M. Tarlie and R. D. Astumian, Proc. Natl. Acad. Sci. U.S.A.
95, 2039 (1998).

[18] M. Bier, M. Kostur, I. Derenyi, and R. D. Astumian, Phys.
Rev. E 61, 7184 (2000).

020102-4



